УДК 621.923.6

DOI: 10.25206/2310-4597-2023-1-38-41

РЕНОВАЦИЯ МНОГОГРАННЫХ ТВЕРДОСПЛАВНЫХ ПЛАСТИН ПО ЗАДНЕЙ ПОВЕРХНОСТИ

RENOVATION OF MULTIFACETED HARD-ALLOY INSERTS ON THE REAR SURFACE

Е. В. Васильев, Ю. А. Блохина, М. М. Лакман, С. В. Михайленко Омский государственный технический университет, г. Омск, Россия

E. V. Vasiliev, Yu. A. Blokhina, M. M. Lakman, S. V. Mikhailenko Omsk State Technical University, Omsk, Russia

Анномация. Рассмотрены способы шлифования задней поверхности режущих многогранных твердосплавных пластин с восстановлением вершин. Произведен анализ наиболее эффективной схемы шлифования. Осуществлена технологическая наладка для реновации многогранных твердосплавных пластин. Разработана управляющая программа для обработки режущих пластин на шлифовально-заточном станке с ЧПУ модели ВЗ-750Ф4. Произведен анализ результатов реновации многогранных твердосплавных пластин выбранным методом шлифования по геометрическим параметрам и стойкости режущих пластин относительно новых.

Ключевые слова: восстановление режущего инструмента, затачивание, переточка, реновация, твердосплавные пластины, схемы шлифования.

Abstract. The methods of grinding the rear surface of cutting multifaceted hard-alloy inserts with the restoration of the vertices are considered. The analysis of the most effective grinding scheme was made. Technological adjustment for the renovation of multifaceted hard-alloy plates has been carried out. A control program has been developed for processing cutting inserts on a grinding machine CNC model V3-750F4. The analysis of the results of the renovation of multifaceted hard-alloy inserts by the selected grinding method in terms of geometric parameters and tool life of cutting inserts relative to new ones was carried out.

Keywords: restoration of cutting tools, sharpening, regrinding, renovation, hard-alloy inserts, grinding schemes.

І. Введение

Современное производство невозможно представить без широкого ассортимента режущего инструмента. Однако, актуальной остается проблема глобального импорта необходимого инструмента. На данный момент на производстве используется более 90% режущих инструментов импортного производства [1].

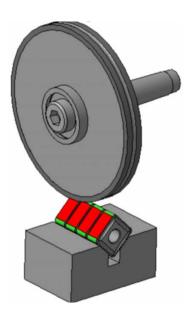
Влияние импорта на жизнеспособность отечественных предприятий можно сократить путем осуществления переточки (реновации) режущего инструмента [2], [3], [4], [5].

Стоимость инструмента может составлять до 20% от стоимости готовой продукции [6]. В связи с этим важно, чтобы восстановленный инструмент был дешевле нового зарубежного. Однако, переточенный режущий инструмент также должен обладать рядом необходимых параметров для работы в определенных условиях. В массовом производстве не допускается снижение стойкости режущего инструмента и существенное изменение его геометрии, влияющее на условия резания. Из этого вытекает ряд требований к переточенному инструменту, что осложняет его реновацию.

На практике чаще всего встречаются два вида износа режущего инструмента: выкрашивание по передней поверхности и по задней поверхности пластины. В зависимости от вида износа, условий резания и условий базирования пластины в гнезде инструмента подбирается подходящая схема шлифования [7], [8], [9].

Затачивание многогранных твердосплавных пластин по передней поверхности не меняет размеры их контуров, в данном случае происходит изменение только высоты вершин, условий стружкоотвода и стружколомания [7].

Реновация режущих пластин по задней поверхности изменяет конфигурацию, размеры их контуров и, как следствие, последующие условия резания и базирования пластины в гнезде инструмента.


II. Постановка задачи

В данном научном труде сформулированы следующие задачи:

- 1. Осуществление технологической наладки для шлифования многогранных твердосплавных пластин выбранным методом.
- 2. Написание управляющей программы для осуществления перетачивания многогранных твердосплавных пластин на шлифовальном станке с числовым программным управлением (ЧПУ) В3-750Ф4.
 - 3. Произведение анализа результата реновации многогранных пластин.

III. ТЕОРИЯ

Существует два способа шлифования задней поверхности режущей пластины с восстановлением вершины: методом копирования и методом обката (рис. 1) [10].

Puc. 1. Схема шлифования многогранной твердосплавной пластины методом копирования

Существенным недостатком метода копирования является повышенный контроль за износом алмазного шлифовального круга и частая его правка, что замедляет и усложняет переточку пластины.

Перетачивание методом обката можно осуществить двумя разными схемами шлифования. Первая схема шлифования осуществляется в специальном приспособлении с базированием резца с обрабатываемой пластиной по боковым опорным поверхностям резца. Вторая схема отличается креплением пластины с базированием по центральному отверстию пластины. Опытные испытания показали эффективность применения схемы шлифования многогранной твердосплавной пластины методом обката с базированием по центральному отверстию пластины [7].

IV. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

На основании приведенных выше исследований осуществлена технологическая наладка для шлифования многогранной твердосплавной пластины методом обката с базированием по центральному отверстию (рис. 2).

Рис. 2. Технологическая наладка для переточки многогранной пластины

Для осуществления шлифования на станке с ЧПУ В3-750Ф4 была разработана управляющая программа.

V. ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТОВ

Перетачивание производилось по задней поверхности пластины с притуплением режущей кромки. Результат шлифования представлен на рис. 3.

Рис. 3. Результат переточки многогранных твердосплавных пластин: а) изношенная пластина, б) переточенная пластина

Внешне очевидно, что после переточки выбранным методом сколы изношенной пластины устранены и геометрические параметры пластины сохранены.

VI. Выводы и заключения

Произведена технологическая наладка и разработана управляющая программа для обеспечения переточки многогранных твердосплавных пластин по задней поверхности методом обката с базированием пластины по центральному отверстию.

Стойкость переточенных многогранных твердосплавных пластин не уступает стойкости новых зарубежных пластин. Стоимость переточки не превышает 20% от стоимости новой пластины, что позволяет существенно сократить расходы предприятия на инструментальное обеспечение.

Список литературы

- 1. Vasil'ev E. V., Popov A. Yu., Bugai I. A., Nazarov P. V. Manufacture and Design of Special Hard-Alloy Mills // Russian engineering research. 2014. Vol. 34, no. 8. Pp. 522–533. DOI: 10.3103/S1068798X14080140.
- 2. Медведева О. И., Янюшкин А. С., Лобанов Д. В. [и др.]. Анализ геометрии контактного взаимодействия алмазного круга с обрабатываемой деталью при плоском шлифовании // Механики XXI веку. 2013. № 12. С. 104–106.
- 3. Лобанов Д. В., Янюшкин А. С., Кирпикова Е. И. [и др.]. Сравнительный анализ методов комбинированной алмазной обработки твердых сплавов // Механики XXI веку. 2012. № 11. С. 155–159.
- 4. Васильев Е. В., Блохина Ю. А. , Лакман М. М. Схема формообразования задней поверхности пятигранных твердосплавных пластин на станках с ЧПУ // Омский научный вестник. 2023. № 1 (185). С. 10–13.
- 5. Vasil'ev E. V., Popov A. Y., Lyashkov A. A., Nazarov P. V. Developing a Machining Strategy for Hard-Alloy Polyhedral Inserts on CNC Grinding and Sharpening Machines // Russian engineering research. 2018. Vol. 38, no. 8. Pp. 642–644.
- 6. Васильев Е. В, Попов А. Ю. Определение рациональной геометрии режущей части переточенных твердосплавных пластин, предназначенных для чернового точения // СТИН. 2014. № 2. С. 16–20.
- 7. Васильев Е. В., Попов А. Ю., Васильева М. В., Назаров П. В. Реновация многогранных твердосплавных пластин сборных режущих инструментов // Вестник современных технологий. 2016. № 3. С. 10–15.
- 8. Васильев Е. В., Попов А. Ю., Валова В. А. [и др.]. Исследование влияния режимов обработки и характеристики алмазного круга на точность обработки при затачивании режущей части многогранных твердосплавных пластин // Ученые Омска региону: материалы IV Регион. науч.-техн. конф. 2019. С. 8–13.
- 9. Назаров П. В., Черных И. К., Матузко Е. Н. [и др.]. Анализ схем крепления режущих пластин для затачивания по задней поверхности // Омский научный вестник. 2017. № 1 (151). С. 30–33.
- 10. Палей М. М., Дибнер Л. Г., Флид М. Д. Технология шлифования и заточки режущего инструмента. Москва: Машиностроение, 1988. 288 с.