УДК 687.01

DOI: 10.25206/2310-4597-2023-1-71-78

ТЕНДЕНЦИИ РАЗВИТИЯ ПРОЕКТИРОВАНИЯ ОДЕЖДЫ С ПОМОЩЬЮ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

TRENDS IN THE DEVELOPMENT OF CLOTHING DESIGN USING ARTIFICIAL INTELLIGENCE

А. С. Рукавишникова, В. А. Денисенко Донской государственный технический университет, г. Ростов-на-Дону, Россия

> A. S. Rukavishnikova, V. A. Denisenko Don State Technical University, Rostov-on-Don, Russia

Аннотация. В статье рассматриваются тенденции развития создания дизайна костюма в цифровой виртуальной среде с помощью нейронных сетей. Раскрыто понятие "нейросеть" и целесообразные возможности её использования на этапах проектирования моделей одежды. Представлена информация о цифровых ресурсах, которыми пользуются дизайнеры костюма. С помощью двух нейросетей сгенерированы модели по заданным параметрам и эскизам.

Ключевые слова: искусственный интеллект, информационные технологии, нейросеть, цифровые технологии, нейронные связи, Artbreeder, Midjourney.

Abstract. The article discusses the trends in the development of design creation in a digital virtual environment using neural networks. The concept of "neural network" and the appropriate possibilities of its use at the stage of sketching clothing models are also considered. Information is provided about the sites that designers use and the stages of their use. With the help of two neural networks, models were generated according to the specified parameters and sketches.

Keywords: artificial intelligence, information technologies, neural network, digital technologies, neural connections, Artbreeder, Midjourney.

I. Введение

В настоящее время цифровые технологии всё больше поглощают различные сферы нашей жизни, в том числе это касается и fashion индустрии [1]. В социальных сетях регулярно встречается информация об искусственном интеллекте, но никто не догадывается, что известные нам бренды могут их использовать для проектирования своих будущих коллекций. Несмотря на огромный интерес к новому витку информационных технологий, практически отсутствует информация об их применении и работе в сфере моды. Задачей данного исследования является анализ возможностей использования нейросетей для проектирования одежды, а также обзор модных брендов, которые уже используют в создании своей продукции виртуальную среду. Итог работы представлен в виде моделей, разработанных с помощью нейронной сети на основе перспективных направлений моды. Результаты анализа покажут, насколько удобно и эффективно использовать нейросети в мелкосерийном производстве одежды.

II. Постановка задачи

С развитием технологий нейронные сети находят все большее применение в легкой промышленности. Чтобы оставаться конкурентоспособным и интегрированным в мировой экономике, индустрия моды в значительной степени зависит от технологического прогресса и выпуска новых продукции. Помимо маркетинга, по-купатели желают увидеть товары, которые удовлетворяют их потребности. Они хотят выбирать более высокого качества и разнообразного выбора. Поэтому, для более быстрого и эффективного подхода в поиске новых идей, текущее технологическое состояние даёт возможность использовать искусственный интеллект. Благодаря такому прорыву в науке, тема использования нейросетей для проектирования одежды не нашла ещё своего полного отражения в публикациях.

III. Теория

Нейронные сети — это форма искусственного интеллекта, в основе которой лежат нейронные связи, подобные схемам человеческого мозга. Сам термин появился ещё в 1943 году, но технология получила большее распространение только сейчас. Нейросети представляют собой компьютерную программу, использующую алгоритмы, с помощью которых она функционирует. Чаще всего эти программы пишутся на языке Python с использованием библиотек глубокого обучения, а нейронные сети классифицируются как генеративные состязательные. За один и тот же промежуток времени, нейронная сеть может генерировать больше вариантов изображений, чем человеком, это делает ее более эффективной альтернативой. Отличительной особенностью нейронной сети является то, что она самообучается на огромном количестве поступающей информации, таким образом, нейронная сеть узнает, как выглядит определённый объект [2].

В 2016 году в Калифорнии была создана нейросеть pix2pix, генерирующая реалистичные фотографии из набросков. Ее возможности невозможно было использовать в лёгкой промышленности для задач легкой промышленности. На основе pix2pix была выпущена российская технология искусственного интеллекта YUGE – YXI AI, которая базируется исключительно на создании эскизов одежды. Её целью являлось получение персонального дизайна, основанного на заинтересованных моделях, и благодаря этой базе, формируется набросок и генерируется конечное изображение. Примеры работ представлены на рис. 1. На рис. 2 показано, как сгенерированное изображение выглядит уже в материальном виде на модели [3, 4].

Puc. 1. Серия эскизов нейросети YXI AI

Puc. 2. Эскиз нейросети YXI AI и готовая модель

Одной из последних программ является Artbreeder. В данной нейросети можно воспользоваться уже запрограммированными картинками или сделать коллаж из загруженных изображений. Если вышеперечисленное не устраивает, то можно создать эскиз самому с помощью имеющихся инструментов [3].

В 2018 году была разработана ещё одна отечественная нейросеть Trendmind, которая ориентирована только на создание эскизов одежды. Первой моделью было выбрано платье, так как оно может быть очень разнообразного конструктивного и колористического решения. Вначале подбираются фотографии с возможными вариациями моделей, затем генерируется модель в GAN (генеративно–состязательные сети). Авторы нейросети создают дизайны для своих капсул. Примеры их работ представлены на рисунке 3 [3, 5].

Puc. 3. Эскиз нейросети Trendmin и готовая модель

Особую популярность приобретает нейросеть Midjourney. В ней получаются красивые и необычные формы изделий, генерируются принты и узоры для тканей. Опираясь на такую огромную популярность нейросетей, челябинский дизайнер Ксения Герц вместе с Сергеем Коротковым решили провести эксперимент во время проведения воркшопа – сгенерировать дизайн жилета с последующим созданием макета. В цифровой

среде Midjourney они сформировали запрос: Men's Vest, Minimalism, Pockets, Happiness, Light, Transparent, Dark, Geometric, Dynamic, Comfortable, Stone. В результате было получено 4 вариации модели жилета и выбрана та, которая реализуема с технологической точки зрения. Итог можно увидеть на рисунке 4 [6].

Рис. 4. Эскиз нейросети Midjourney и готовая модель

IV. Результаты экспериментов

Основываясь на анализе вышеперечисленных нейросетей и использования их в создании эскизов и прототипов моделей, подготовлены изображения моделей одежды с учетом тенденций моды. Нужно отметить, что не все нейросети можно использовать для личного пользования, не все доступны. Для создания набросков моделей в цифровой среде было использованы две общедоступные нейросети: Artbreeder и Midjourney.

При работе в Artbreeder для конечной модели исходным изображением послужил произвольный набросок, который был создан с использованием встроенной функции "кисть". Первоначальный эскиз представлен на рис. 5.

Рис. 5. Исходный эскиз, созданный в Artbreeder

Для дальнейшего преобразования в строке описания был внесен запрос «Fashion show 2023» и выбраны два разных изображения. Искусственный интеллект программы показывает, насколько процентов исходное изображение будет видоизменяться. В первом случае, АІ выставлена на среднее значение, примерно 50%, во втором, эта функция выставлена на 100%. В результате двух генераций были получены модели с разной степенью преобразования, которые представлены на рис. 6 и 7.

Рис. 6. Конечное изображение с АІ 50%

Рис. 7. Конечное изображение с АІ 100%

В нейросети Midjourney, создание готовой коллекции формировалось на основе дизайнов моделей таких брендов одежды, как Prada и Louis Vuitton. В строке запроса через команду /imagine prompt было введено описание изображений: "Fashion show 2050 Prada Louis Vuitton". В результате получили 4 вариации соответствующих изображений. При втором генерировании по данному запросу была получена коллекция, которая представлена на рис. 8, 9. Преимуществом данной нейросети является возможность предоставления различных вариантов понравившегося изображения из ранее полученных моделей. Итог преобразованных эскизов из последней модели можно рассмотреть на рис. 10.

Puc. 8. Коллекция изображений, сгенерированных в Midjourney

Рис. 9. Коллекция изображений, сгенерированных в Midjourney

Рис. 10. Различные варианты понравившейся модели, сгенерированные в Midjourney

V. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Есть несколько вариантов использования изображений, созданных в нейросети:

- брать как прототип, аналог, идею и проектировать свою физическую модель;
- использовать изображения, созданные в нейросети, и дорабатывать их в фоторедакторах при подготовке fashion-иллюстрации;
- использовать картинки из нейросети для вдохновения, оформления, прочтения стилей, выбора цветовой гаммы для fashion эскизов;
 - разрабатывать новые варианты моделей на основе загруженных собственных моделей или прототипов;
 - создавать картинки по конкретным работам художников иллюстраторов, использовать их стиль;
 - использовать картинки из нейросетей для ведения блога модных брендов.

VI. Выводы и заключение

В заключение нужно отметить, что использование нейросетей на производстве предоставляет возможность создания новых моделей и поиска идей. Это поможет сократить время на стадии проектирования на основе трендов, создавать более интересные модели, что приведёт к повышению спроса и прибыли. Но, несмотря на большую пользу нейронных сетей, они не могут полностью заменить человека. Их стоит использовать как дополнительный источник генерации идей. Искусственный интеллект на данном этапе развития не способен на новаторство и создаёт эскизы из определенной библиотеки изображений. На сгенерированных эскизах и фото моделей невозможно прочитать чёткое конструктивное и технологическое решение. Поэтому на данной стадии развития производство не может обойтись без специалистов, которые будут дорабатывать подобные изображения [2].

Список литературы

- 1. Жиленков И. В Создание фотореалистичных изображений при помощи программного обеспечения GauGAN [Электронный ресурс] // elibrary: [сайт]. URL: https://elibrary.ru/item.asp?id=40550485 (дата обращения: 21.01.2023).
- 2. Трихина А. Д. Как нейросети повлияют на будущее в дизайн индустрии. [Электронный ресурс] // elibrary: [сайт]. URL: https://elibrary.ru/item.asp?id=46299827 (дата обращения: 05.02.2023).
- 3. Голованева А. В., Алибекова М. И. Нейромода: использование нейросетей в эскизировании и создании модных изделий. [Электронный ресурс] // elibrary: [сайт]. URL: https://elibrary.ru/item.asp?id=48654945 (дата обращения: 09.02.2023).
- 4. YXI AI (искусственный интеллект YUGE) / [Электронный ресурс] // ВКонтакте: [сайт]. URL: https://vk.com/yxiai (дата обращения: 12.02.2023).
- 5. Попова Т. Мы хотим доказать, что искусственный интеллект может заменить дизайнеров. [Электронный ресурс] // Vc.ru: [сайт]. URL: https://vc.ru/flood/29463-my-hotim-dokazat-chto-iskusstvennyy-intellekt-mozhet-zamenit-dizaynerov (дата обращения: 15.02.2023).
- 6. Герц К. [Электронный ресурс] // ВКонтакте: [сайт]. URL: https://vk.com/wall4846224_3180?access_key=a52f2b6b3d83830fe3 (дата обращения: 22.02.2023).